Hot and Cold

Suppose you have three identical Dewar flasks labeled A, B, and C. (A Thermos is a Dewar flask.) You also have an empty container labeled D, which has thermally perfect conducting walls and which fits inside a Dewar flask.

Pour 1 liter of 80°C water into flask A and 1 liter of 20°C water into flask B. Now, using all four containers, is it possible to use the hot water to heat the cold water so that the final temperature of the cold water is higher than the final temperature of the hot water? How? (You can’t actually mix the hot water with the cold.)

Click for Answer

A Dice Puzzle

Timothy and Urban are playing a game with two six-sided dice. The dice are unusual: Rather than bearing a number, each face is painted either red or blue.

The two take turns throwing the dice. Timothy wins if the two top faces are the same color, and Urban wins if they’re different. Their chances of winning are equal.

The first die has 5 red faces and 1 blue face. What are the colors on the second die?

Click for Answer

Return to Sender

Mathematician Yutaka Nishiyama of the Osaka University of Economics has designed a nifty paper boomerang that you can use indoors. A free PDF template (with instructions in 70 languages!) is here.

Hold it vertically, like a paper airplane, and throw it straight ahead at eye level, snapping your wrist as you release it. The greater the spin, the better the performance. It should travel 3-4 meters in a circle and return in 1-2 seconds. Catch it between your palms.

The Modern Prometheus

jacobson railroad

By 1958 many of the attributes of living things could be found in our technology: locomotion (cars), metabolism (steam engines), energy storage (batteries), perception of stimuli (iconoscopes), and nervous or cerebral activity (computers). The missing element was reproduction: We hadn’t yet created a nonliving artifact that could make copies of itself.

So Brooklyn College chemistry professor Homer Jacobson built one. Using an HO gauge model railroad, he designed an “organism” made of boxcars that could use sensors to select other cars on the track and assemble them on a siding into models of itself. “Head” cars have “brains,” and “tail” cars have “muscles” and “eyes”; together, a head and a tail make an organism in which the head directs the tail to watch for available cars elsewhere on the track and shunt them appropriately onto a siding to create a new organism.

“Any new ‘organisms’ formed continue the propagation in a linear fashion,” Jacobson wrote, “until the environment runs out of parts, or there are no more sidings available, or a mistake is made somewhere in the operation of a cycle, i.e., a ‘mutation.’ Such an effect, like that with living beings, is usually fatal.”

(Homer Jacobson, “On Models of Reproduction,” American Scientist, September 1958.)

The Vacuum Airship

A conventional balloon rises because its airbag displaces a large volume of air. But the gas that fills the bag has some weight; it, along with the weight of the gondola, reduces the balloon’s total lift.

Realizing this, Italian monk Francesco Lana de Terzi in 1670 proposed a “vacuum airship,” a balloon whose airbag was filled with nothing at all. Since a vacuum weighs nothing, this should maximize the vehicle’s lift — the vacuum could displace a large volume of air without itself adding any weight.

In principle this might work; the problem is that the vacuum would tend to collapse its container, and building a shell sturdy enough to withstand it would leave us with a ship too heavy to lift. It’s not clear whether any material or structure could overcome this problem.

Stamps and Math

Lee Sallows tells me that the postal system of Macau is releasing a new series of stamps based on magic squares. The full set will touch on everything from the Roman SATOR square to Dürer’s Melencolia. Details are here.

Charmingly, the values of the stamps will be 1, 2, …, 9 Macau patacas, so that the sheet of the nine stamps will itself form a classic Lo Shu magic square. Lee’s contribution, above, is a Nasik 2D geomagic square of order 3 — not only are all the rows and columns magic, but so are all six diagonals, including the four “broken” diagonals.

Somewhat related: In 2000 Finland issued seven stamps in classic tangram shapes, featuring images of science and education. (One of the small triangles, barely visible here, is a Sierpinski gasket.) Only three of the seven shapes are denominated postage, but I should think the temptation is overwhelming to arrange all seven on an envelope in the shape of a little man or a fish or something. I wonder what the post office makes of that.

Stretch Goals

stretch goals puzzle

Two circles intersect. A line AC is drawn through one of the intersection points, B. AC can pivot around point B — what position will maximize its length?

Click for Answer

Catch as Catch Can

Claude Shannon, the father of information theory, took an active interest in juggling. He used to juggle balls while riding a unicycle through the halls of Bell Laboratories, and he built the first juggling robot from an Erector set in the 1970s. (The machine above mimics W.C. Fields, who himself juggled in vaudeville before turning to comedy.)

Noting that juggling seems to appeal to mathematics-minded people, Shannon offered the following theorem:

claude shannon juggling theorem

F is flight time, the time the ball spends in the air
D is “dwell time,” the time it spends in the hand
V is vacancy, the time a hand spends empty
B is the number of balls
H is the number of hands

“Theorem 1 allows one to calculate the range of possible periods (time between hand throws) for a given type of uniform juggle and a given time of flight,” he wrote. “A juggler can change this period, while keeping the height of his throws fixed, by increasing dwell time (to increase the period) or reducing dwell time to reduce the period. The total mathematical range available for a given flight time can be obtained by setting D = 0 for minimum range and V = 0 for maximum range in Theorem 1. The ratio of these two extremes is independent of the flight time and dependent only on the number of balls and hands.”

To measure dwell times, Shannon actually created a “jugglometer” in which a juggler wore copper mesh over his fingers and juggled foil-covered lacrosse balls; catching the ball closed a connection between the fingers and started a clock. “Preliminary results from testing a few jugglers indicate that, with ball juggling, vacant time is normally less than dwell time, V ranging in our measurements from fifty to seventy per cent of D.”

Shannon noted that juggling gets dramatically harder as the number of balls increases. He worked out a foolproof solution, at least in theory. A light ray that starts at one focus of an ellipse will be reflected to the other focus. If the ellipse is rotated around its major axis, it will create an egglike shell with two foci. Now if a juggler stands with a hand at each focus, then a ball thrown from either hand, in any direction, will bounce off the shell and arrive at the other hand!

(“Scientific Aspects of Juggling,” in Claude Elwood Shannon: Collected Papers, 1993.)