A Discreet Correspondence

In Ulysses, Leopold Bloom’s locked private drawer at 7 Eccles Street contains, among other things:

3 typewritten letters, addressee, Henry Flower, c/o P.O. Westland Row, addresser, Martha Clifford, c/o P.O. Dolphin’s Barn: the transliterated name and address of the addresser of the 3 letters in reversed alphabetic boustrophedontic punctated quadrilinear cryptogram (vowels suppressed) N. IGS./WI. UU. OX/W. OKS. MH/Y. IM …

This actually works: Quadrilinear means that the cipher is to be set in four lines; reversed alphabetic means that the key is a = z, b = y, etc.; and boustrophedontic is a term from paleography meaning that the writing runs right and left in alternate lines. So the cryptogram and its solution look like this:

N . I G S .
m a r t h a

W I . U U . O X
d r o f f i l c

W . O K S . M H
d o l p h i n s

Y . I M
b a r n

Apparently Joyce or Bloom forgot that the last line should run right to left.

(From David Kahn, The Codebreakers, 1967.)

Russell’s Decalogue

In a 1951 article in the New York Times Magazine, Bertrand Russell laid out “the Ten Commandments that, as a teacher, I should wish to promulgate”:

  1. Do not feel absolutely certain of anything.
  2. Do not think it worthwhile to produce belief by concealing evidence, for the evidence is sure to come to light.
  3. Never try to discourage thinking, for you are sure to succeed.
  4. When you meet with opposition, even if it should be from your husband or your children, endeavor to overcome it by argument and not by authority, for a victory dependent upon authority is unreal and illusory.
  5. Have no respect for the authority of others, for there are always contrary authorities to be found.
  6. Do not use power to suppress opinions you think pernicious, for if you do the opinions will suppress you.
  7. Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric.
  8. Find more pleasure in intelligent dissent than in passive agreement, for, if you value intelligence as you should, the former implies a deeper agreement than the latter.
  9. Be scrupulously truthful, even when truth is inconvenient, for it is more inconvenient when you try to conceal it.
  10. Do not feel envious of the happiness of those who live in a fool’s paradise, for only a fool will think that it is happiness.

“The essence of the liberal outlook in the intellectual sphere is a belief that unbiased discussion is a useful thing and that men should be free to question anything if they can support their questioning by solid arguments,” he wrote. “The opposite view, which is maintained by those who cannot be called liberals, is that the truth is already known, and that to question it is necessarily subversive.”

A Bimagic Queen’s Tour

walkington semi-bimagic queen's tour
Image: William Walkington (CC BY-NC-SA 4.0)

A queen’s tour is the record of a chess queen’s journey around an empty board in which she visits each of the squares once. If the squares are numbered by the order in which she visits them, then the resulting square is magic if the numbers in each rank and file sum to the same total. It’s bimagic if the squares of these numbers also produce a consistent total.

William Walkington has just found the first bimagic queen’s tour, which also appears to be the first bimagic tour of any chess piece. (William Roxby Beverley published the first magic knight’s tour in The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science in 1848.)

Note that here the long diagonals don’t produce the magic sum, as they would in a magic square. This constraint is normally dropped in a magic tour — in fact, of the 140 magic knight tours possible on an 8×8 board, none have two long magic diagonals, and no bimagic queen’s tour with qualifying diagonals is possible on such a board either.

More details, and an interesting description of the search, are on William’s blog. He has been told that a complete list of such bimagic queen’s tours is within reach of a computer search, though the field is daunting — there are more than 1.7 billion essentially different semi-bimagic squares possible on an 8×8 board, and each allows more than 400 million permutations.

For What It’s Worth

In 1882 Anton Chekhov published eight “Questions Posed by a Mad Mathematician.” Here are the first three:

  1. I was chased by 30 dogs, 7 of which were white, 8 gray, and the rest black. Which of my legs was bitten, the right or the left?
  2. Ptolemy was born in the year 223 A.D. and died after reaching the age of eighty-four. Half his life he spent traveling, and a third, having fun. What is the price of a pound of nails, and was Ptolemy married?
  3. On New Year’s Eve, 200 people were thrown out of the Bolshoi Theater’s costume ball for brawling. If the brawlers numbered 200, then what was the number of guests who were drunk, slightly drunk, swearing, and those trying but not managing to brawl?

The full list appears in The Undiscovered Chekhov, translated by Peter Constantine (1998). No answers are provided.

Laconic

At the 1961 Solvay conference on physics, Abdus Salam overheard this conversation between Richard Feynman and Paul Dirac:

Feynman extended his hand towards Dirac and said: ‘I am Feynman.’ It was clear from his tone that it was the first time they were meeting. Dirac extended his hand and said: ‘I am Dirac.’ There was silence, which from Feynman was rather remarkable. Then Feynman, like a schoolboy in the presence of a Master, said to Dirac: ‘It must have felt good to have invented that equation.’ And Dirac said: ‘But that was a long time ago.’ Silence again. To break this, Dirac asked Feynman: ‘What are you yourself working on?’ Feynman said: ‘Meson theories’ and Dirac said: ‘Are you trying to invent a similar equation?’ Feynman said: ‘That would be very difficult.’ And Dirac, in an anxious voice, said: ‘But one must try.’

“At that point the conversation finished because the meeting had started.”

(Abdus Salam, “Physics and the Excellences of the Life It Brings,” in Ideals and Realities: Selected Essays of Abdus Salam, 1987.)

All Aboard

http://www.chemistry-blog.com/2013/08/27/the-underground-map-of-the-elements/
Image: Chemistry Blog

This is brilliant: University of Hull chemist Mark Lorch has combined the periodic table with London’s classic Tube map to create an Underground Map of the Elements.

“My son loves trains. So I came up with a train related twist to an inspection of the periodic table. We sat and cut up a copy of the table and then rearranged each element as a ‘station’ on an underground rail system. Each line represents a characteristic shared by the elements on that line.”

More details at the Guardian and at Chemistry Blog.

In a Nutshell

https://commons.wikimedia.org/wiki/File:08608_einstein_1916.jpg

“The difference between the amoeba and Einstein is that, although both make use of the method of trial and error elimination, the amoeba dislikes erring while Einstein is intrigued by it.” — Karl Popper, Objective Knowledge: An Evolutionary Approach, 1972

Neuberg’s Theorem

https://commons.wikimedia.org/wiki/File:Neuberg_6.gif
Image: Wikimedia Commons

Construct squares outwardly on the sides of triangle ABC, and make a triangle of their centers. Now the centers of squares constructed inwardly on the sides of that triangle will fall on the midpoints of the sides of ABC.

(Due to Luxembourger mathematician Joseph Neuberg, 1840-1926.)

The Last Banana

A thought experiment in probability by Leonardo Barichello: Two people are stranded on an island with only one banana to eat. To decide who gets it, they agree to play a game. Each of them will roll a fair 6-sided die. If the largest number rolled is a 1, 2, 3, or 4, then Player 1 gets the banana. If the largest number rolled is a 5 or 6, then Player 2 gets it. Which player has the better chance?

Click for Answer

Counting Sheep

https://www.flickr.com/photos/gruban/3980674035
Image: Flickr

Shepherds in Northern England used to tally their flocks using a base-20 numbering system. They’d count a score of sheep using the words:

Yan, tan, tether, mether, pip,
Azer, sayzer, acka, konta, dick,
Yanna-dick, tanna-dick, tethera-dick, methera-dick, bumfit,
Yanna-bum, tanna-bum, tethera-bum, methera-bum, jigget

… and then denote the completion of a group by taking up a stone or marking the ground before commencing the next count.

These systems vary by region — Wikipedia has them laid out in pleasing tables.

(Thanks, Brieuc.)