Building Codes

http://commons.wikimedia.org/wiki/File:1517_Savings_100.png

Writing on “The Sagacity of the Bees” in fourth century, Pappus of Alexandria argued that bees had contrived the hexagonal shape of their honeycomb cells “with a certain geometrical forethought.” Irregularly shaped cells “would be displeasing to the bees,” he wrote, and only triangles, squares, or hexagons could fill the space regularly. “The bees in their wisdom chose for their work that which has the most angles, perceiving that it would hold more honey than either of the two others.”

In 1964, in a charming address titled “What the Bees Know and What They Do Not Know,” Hungarian mathematician László Tóth told the American Mathematical Society that he had found a slight improvement on the classic honeycomb design: Instead of closing the bottom of each cell with three rhombi, as bees do, it’s more efficient to use two hexagons and two rhombi.

But, he added immediately, “We must admit that all this has no practical consequence. By building such cells the bees would save per cell less than 0.35% of the area of an opening (and a much smaller percentage of the surface-area of a cell). On the other hand, the walls of the bee-cells have a non-negligible width which is, in addition, far from being uniform and even the openings of the bee-cells are far from being exactly regular. Under such conditions the above ‘saving’ is quite illusory. Besides, the building style of the bees is definitely simpler than that described above. So we would fail in shaking someone’s conviction that the bees have a deep geometrical intuition.”

(László Fejes Tóth, “What the Bees Know and What They Do Not Know,” Bulletin of the American Mathematical Society, 1964, 468-81.)

UPDATE: Wait — maybe they’re not as smart as we thought. (Thanks, Vic.)

Fish Story

http://commons.wikimedia.org/wiki/File:Flying_Fish_(PSF).png

David Hume argued that reports of miracles can never be credited, because the weight of human experience must always favor a more natural explanation. “Nothing is esteemed a miracle, if it ever happen in the common course of nature. It is no miracle that a man, seemingly in good health, should die on a sudden: because such a kind of death, though more unusual than any other, has yet been frequently observed to happen. But it is a miracle, that a dead man should come to life; because that has never been observed in any age or country. There must, therefore, be a uniform experience against every miraculous event, otherwise the event would not merit that appellation.”

The sun is said to have danced in the sky in 1917. Well, which is more likely, that such an extraordinary event actually occurred, or that it was really a mass hallucination, an optical illusion, or any of a hundred more familiar explanations? A miracle, a suspension of natural law, is always the least likely possibility, so as rational creatures we must always reject it.

But Alfred Russel Wallace objected, “Such a simple fact as the existence of flying fish could never be proved, if Hume’s argument is a good one; for the first man who saw and described one, would have the universal experience against him that fish do not fly, or make any approach to flying, and his evidence being rejected, the same argument would apply to the second, and to every subsequent witness.”

Hume’s argument, he said, was “radically fallacious,” because if it were sound “no perfectly new fact could ever be proved, since the first and each succeeding witness would be assumed to have universal experience against him.” Who’s right?

Specialists

I don’t know who came up with this — it’s been bouncing around science journals for 50 years:

hydromicrobiogeochemist: one who studies small underwater flora and their relationship to underlying rock strata by using chemical methods

microhydrobiogeochemist: one who studies flora in very small bodies of water and their relationship to underlying rock strata by using chemical methods

microbiohydrogeochemist: one who studies small flora and their relationship to underlying rock strata by using chemical methods and SCUBA equipment

biohydromicrogeochemist: a very small geochemist who studies the effect of plant life in hydrology

hydrobiomicrogeochemist: a very small geochemist who studies wet plants

biomicrohydrogeochemist: a very small, wet geochemist who likes lettuce

First Principles

This prudence of not attempting to give reasons before one is sure of facts, I learnt from one of your sex, who, as Selden tells us, being in company with some gentlemen that were viewing, and considering something which they called a Chinese shoe, and disputing earnestly about the manner of wearing it, and how it could possibly be put on; put in her word, and said modestly, Gentlemen, are you sure it is a shoe? — Should not that be settled first?

— Benjamin Franklin, letter to Mary Stevenson, Sept. 13, 1760

Crowd Control

http://commons.wikimedia.org/wiki/File:CalhounJ.JPG

In July 1968, ethologist John B. Calhoun built a “mouse utopia,” a metal enclosure 9 feet square with unlimited food, water, and nesting material. He introduced four pairs of mice, and within a year they had multiplied to 620. But after that the society began to fall apart — males became aggressive, females began neglecting their young, and the weaker mice were crowded to the center of the pen, where resources were scarce. After 600 days the females stopped reproducing and the males withdrew from them entirely, and by January 1973 the whole colony was dead. Even when the population had returned to its former levels, the mice’s behavior had remained permanently changed.

There were no predators in the mouse universe; the only adversity was confinement itself. Calhoun felt that his experiment held lessons as to the potential dangers of human overpopulation, and he urged his colleagues to study the effects of high population density on human behavior. “Our success in being human has so far derived from our honoring deviance more than tradition,” he said. “Now we must search diligently for those creative deviants from which, alone, will come the conceptualization of an evolutionary designing process. This can assure us an open-ended future toward whose realization we can participate.”

(Thanks, Pål.)

Club Science

http://commons.wikimedia.org/wiki/File:Appleton.jpg

From Sir Edward Victor Appleton’s speech at the 1947 Nobel Banquet:

Ladies and gentlemen, you should not … overrate scientific methods, as you will learn from the story of a man who started an investigation to find out why people get drunk. I believe this tale might interest you here in Sweden. This man offered some of his friends one evening a drink consisting of a certain amount of whisky and a certain amount of soda water and in due course observed the results. The next evening he gave the same friends another drink, of brandy and soda water in the same proportion as the previous night. And so it went on for two more days, but with rum and soda water, and gin and soda water. The results were always the same.

He then applied scientific methods, used his sense of logic and drew the only possible conclusion — that the cause of the intoxication must have been the common substance: namely the soda water!

That’s from Ronald Clark, Sir Edward Appleton, 1971. Clark adds, “Appleton was pleased but a little surprised at the huge success of the story. Only later did he learn that the Crown Prince drank only soda water — ‘one of those unexpected bonuses which even the undeserving get from Providence from time to time,’ as he put it.”

Best-Laid Plans

Launched in November 1981, the Soviet Union’s Venera 14 probe carried a spring-loaded arm to test the soil of Venus.

The craft journeyed for four lonely months to reach its destination, descended safely through the hostile atmosphere, and landed securely on the surface.

The spring-loaded arm plunged downward — into a camera lens cap, which had just fallen there.

(Thanks, Merv.)