Road Work

http://www.bl.uk/onlinegallery/onlineex/crace/l/largeimage88508.html

Fed up with endless traffic detours in 1830, London printer Charles Ingrey published a pointed puzzle, Labyrinthus Londoninensis, or The Equestrian Perplexed.

“The object is to find a way from the Strand [lower left] to St. Paul’s [center], without crossing any of the Bars in the Streets supposed to be under repair.”

Mending our Ways, our ways doth oft-times mar,
So thinks the Traveller by Horse or Car,
But he who scans with calm and patient skill
This ‘Labyrinthine Chart of London’, will
One Track discover, open and unbarred,
That leads at length to famed St. Pauls Church Yard.

The image above is a bit too small to navigate, but the British Library has an interactive zoomable version (requires Flash).

I don’t have the solution, but The Court Journal of Dec. 14, 1833, hints that “the farthest way round is the nearest way home.”

07/06/2022 UPDATE: A solution! (Thanks, Paul.)

Footwork

A poser from Penn State mathematician Mark Levi’s Why Cats Land on Their Feet (2012):

Using only a stopwatch and a sneaker, how can you find an approximate value for \sqrt{2}?

Click for Answer

Hat Check

A puzzle from MIT Technology Review, July/August 2008:

Each of three logicians, A, B, and C, wears a hat that displays a positive integer. The number on one of the hats is the sum of the numbers on the other two. They make the following statements:

A: “I don’t know my number.”

B: “My number is 15.”

What numbers appear on hats A and C?

Click for Answer

Person to Person

https://commons.wikimedia.org/wiki/File:Adolphe_Bitard_-_T%C3%A9l%C3%A9phone.jpg

The president of a 100-member society receives word that the meeting place must be changed, and he needs to inform the rest of the members. He starts a telephone tree: He informs three members, each of whom informs another three members, and so on until all 100 members have received the news. Using this method, what is the greatest number of members who don’t have to make a call?

Click for Answer

Moving Day

Is it possible to pack six 1 × 2 × 2 blocks and three 1 × 1 × 1 blocks into a 3 × 3 × 3 box?

Click for Answer

Cross Purposes

https://commons.wikimedia.org/wiki/File:Willem_Koekkoek_-_Dutch_town_in_the_summer_10426.jpg

A perplexing problem from the Pi Mu Epsilon Journal, Spring 1983:

In the little hamlet of Abacinia, the people use two base systems.

One resident says, “26 people use my base, base 10, and only 22 people speak base 14.”

Another says, “Of the 25 residents, 13 are bilingual and 1 is illiterate.”

All the residents speak the truth, but each (naturally) expresses numbers in her own base. How many residents are there?

Click for Answer

Coming and Going

https://pixabay.com/en/autumn-dog-running-dog-forest-665149/

In 1978 the Chronicle of Higher Education mentioned an old exam question:

Q. How far can a dog run into the woods?

A. Halfway. The rest of the time he is running out.

Harvard’s Richard E. Baym wrote in to take issue with the answer:

The correct answer is ‘All the way’. Certainly we understand that the dog is running ‘in’ only until he reaches the middle of the forest, but this is in fact, all the way in. If the dog ran only half ‘in’, he would not yet be at the middle. Indeed if the dog ran halfway in and then ran halfway out, he would still be in the woods.

The editors noted, “It occurs to us that the dog’s continued presence there would be useful, in case something happens to that tree that we’ve been hearing about since high school physics — the one that falls when no one is in the forest and since there is no eardum to register sound waves, makes no noise. You know what a fine sense of hearing a dog has. Let him run halfway in (or as Mr. Baym argues, all the way), settle there, and keep an ear cocked for that tree.”

(from Robert L. Weber, ed., Science With a Smile, 1992.)

Technicalities

In presenting the rules of chess, some writers carelessly say that a pawn that reaches the eighth rank can be promoted to any piece that the player chooses. That’s a bit too generous, as a couple of puzzle composers have noted. In 1941 Leonid Kubbel presented this problem — White is to mate in two moves:

kubbel promotion puzzle

It’s not immediately clear how to release Black from his stalemate and still mate him on the next move. The solution is to promote the e7 pawn to a black king!

kubbel promotion puzzle - solution

Now it’s Black’s move — he has to play 1. … Kd8, and White can mate both kings with 2. Qd7#!

The Polish master Johannes Zukertort offered this one: White is to mate on the move:

zukertort promotion puzzle

Here White promotes the pawn to a black knight, ending the game. (Note that it must be a knight — crazy as it seems, this is the only black piece that produces mate.)

Divide and Conquer

Facing dental surgery one day, mathematician Matt Parker asked Twitter for a math puzzle to distract him. A friend challenged him to put the digits 1-9 in order so that the first two digits formed a number that was a multiple of 2, the first three digits were a multiple of 3, and so on.

Leaving the digits in the conventional order 1234356789 doesn’t work: 12 is divisible by 2 and 123 by 3, but 1234 isn’t evenly divisible by 4. “By the end of my dental procedure, I had some but not all of the digits worked out, but, apparently, you’re not allowed to stay in the dentist’s chair after they’re finished.” At home he finished working out the solution, which is unique. What is it?

Click for Answer