Readouts

sallows readouts puzzle

A puzzle by Lee Sallows. In this readout from a computer-driven electronic display, the digits in the fifth row have been obscured. What are they?

Click for Answer

Extra-ordinary Magic

From Lee Sallows:

A recent contribution to Futility Closet showed an atypical type of 3×3 geometric magic square in which the 4 pieces occupying each of its nine 2×2 subsquares are able to tile the same rectangle. A different square with the same property is seen in the figure here shown, where the nine tiled rectangles appear at right.

sallows extra-ordinary magic 1

As in the earlier example, the square is to be interpreted as if drawn on a torus, the relations among its peripheral cells then being the same as those that result if the square is surrounded with copies of itself, as seen in the following figure showing four such copies, one in each quadrant:

sallows extra-ordinary magic 2

The figure makes it easier to identify the different 2 × 2 subsquares, exactly nine distinct examples of which can be identified. A brief commentary on the square pointed out that the number of ‘magic’ conditions it satisfies is one greater than the eight conditions demanded by a conventional 3 × 3 magic square. Hence the title of the piece, ‘Extra Magic.’

It was while perusing this diagram that an alternative division of the cells into sets of 4 suggested itself. Instead of 2 × 2 subsquares, consider the four cells defined by a cross that can be centered on any chosen cell. The above figure shows a yellow-shaded example, along with a rectangle tiled by its four associated shapes. It is interesting to note that, as before, there are just nine distinct crosses of this kind to be found in a 3 × 3 square. An obvious question thereby prompted was whether or not a new 3 × 3 magic square could be found based upon such crosses rather than 2×2 subsquares? The answer turned out to be yes, but in the process of scrutinizing an initial specimen I noticed that although it embodied nine cross-based sets of 4 rectangle-tiling pieces, as required, it also included a couple of additional rectangle-tiling sets contained within 2 × 2 subsquares. Clearly the maximum number of such surplus sets would be nine, one for each cross, but could a specimen showing nine cross-based and nine subsquare-based rectangle-tiling sets really exist? I lost no time in seeking an answer.

Regrettably, I was unable to find one. However, the figure below shows a close approach to perfection. It is the same 3 × 3 square with which we started, but now shown alongside no less than eight additional rectangles, each of them tiled with a set of 4 pieces belonging to a cross. Note that the missing rectangle is the one belonging to the non-magic central cross, a show of symmetry that seems appropriate.

sallows extra-ordinary magic 3

So whereas a 3 × 3 magic square, numerical or geometric, satisfies at least 8 separate conditions (3 rows + 3 columns + 2 diagonals), the square here shown satisfies no less than eight more.

(Thanks, Lee.)

Extra Magic

sallows geometric magic square

From Lee Sallows:

The traditional magic square is a square array of n×n distinct numbers, their magical property being that the sum of the n numbers occupying each row, column, and diagonal is the same. A variation on this theme that I introduced in 2011 is the geometric magic square in which distinct geometrical figures (usually planar shapes) occupy the cells of the array rather than numbers. The magical property enjoyed by such an array is then that the n shapes making up each row, column, and diagonal can be fitted together as in a jigsaw puzzle so as to yield (i.e. tile) a new compound shape that is the same in each case.

Beyond ‘ordinary’ geometric magic squares, it turns out that the combinative properties of shapes are such as to enable ‘magical’ constructions that are denied to analogous structures using numbers. For example, at left in the figure above is seen a 3×3 square of a kind that cannot be realized using distinct numbers rather than shapes. Note first that the square is to be understood as ‘toroidally-connected’, which is to say, as if inscribed on a torus. Its left-hand edge is then to be interpreted as adjacent to its right-hand edge and its top edge adjacent to its bottom edge. Its magical property is then that the four pieces contained within any 2×2 subsquare can be assembled to produce an identical shape, in this case a rectangle of size 4×5. In all there are nine such subsquares to be found in the square, as seen (again in a square) at right. Note that three of the pieces are disjoint, my attempts to produce a similar solution using nine unbroken pieces having failed. So whereas a 3×3 magic square, numerical or geometric, satisfies at least 8 separate conditions ( 3 rows + 3 columns + 2 diagonals), the square here shown satisfies one more.

(Thanks, Lee!)

Three in One

https://commons.wikimedia.org/wiki/File:Sallows_geometric_alphamagic_square.svg
Image: Wikimedia Commons

A stunning geometric alphamagic square by Lee Sallows. The 3 × 3 grid is a familiar magic square in which each number is spelled out: The first cell contains the number 25, the second 2, and so on. Interpreted in this way, each row, column, and long diagonal sums to 45.

But there’s more: The English name of the number in each cell has been arranged onto a distinctive tile, such that the three tiles in any row, column, or long diagonal can be combined to form the same 21-cell figure, as shown. (Shapes with dotted outlines have been turned over.)

And yet more: Count the number of letters in each of the number names (or, equivalently, count the number of cells that make up each tile). So, for example, TWENTY-FIVE has 10 letters, so replace the TWENTYFIVE tile with the number 10. Similarly, replace TWO with 3, EIGHTEEN with 8, and so on. This produces another magic square:

10  3  8
 5  7  9
 6 11  4

Each row, column, and long diagonal totals 21.

Inventory

The following pair of sentences employ 2 ‘0’s, 2 ‘1’s, 9 ‘2’s, 5 ‘3’s, 5 ‘4’s, 4 ‘5’s, 5 ‘6’s, 2 ‘7’s, 3 ‘8’s and 3 ‘9’s.

The sentences above and below employ 2 ‘0’s, 2 ‘1’s, 8 ‘2’s, 6 ‘3’s, 5 ‘4’s, 6 ‘5’s, 3 ‘6’s, 2 ‘7’s, 2 ‘8’s and 4 ‘9’s.

The previous pair of sentences employ 2 ‘0’s, 2 ‘1’s, 9 ‘2’s, 5 ‘3’s, 4 ‘4’s, 6 ‘5’s, 4 ‘6’s, 2 ‘7’s, 3 ‘8’s and 3 ‘9’s.

(From Lee Sallows and Victor L. Eijkhout, “Co-Descriptive Strings,” Mathematical Gazette 70:451 [March 1986], 1-10.)

Pangrammatic Loops

A marvelous variation on self-inventorying lists, from the inimitable Lee Sallows:

Recalling that a self-enumerating pangram corresponds to a closed loop of length 1, here follows a loop of length 2, which is to say, a pair of pangrams that enumerate each other. The pangrams are both minimal in the sense of containing none but essential letters with no “and”s or other devices openly or surreptitously added.

ONE A, ONE B, ONE C, ONE D, THIRTYONE E, FOUR F, ONE G, FIVE H, FIVE I, ONE J, ONE K, ONE L, ONE M, TWENTYTWO N, SEVENTEEN O, ONE P, ONE Q, SEVEN R, FOUR S, ELEVEN T, THREE U, FIVE V, FOUR W, ONE X, THREE Y, ONE Z.

ONE A, ONE B, ONE C, ONE D, THIRTYTWO E, SEVEN F, ONE G, FOUR H, FIVE I, ONE J, ONE K, TWO L, ONE M, TWENTY N, NINETEEN O, ONE P, ONE Q, SEVEN R, THREE S, NINE T, FOUR U, SEVEN V, THREE W, ONE X, THREE Y, ONE Z.

An alternative (non-minimal) pair includes plural s’s:

ONE A, ONE B, ONE C, ONE D, TWENTYSEVEN E’S, SIX F’S, ONE G, THREE H’S, SIX I’S, ONE L, TWENTY N’S, SIXTEEN O’S, ONE P, ONE Q, SIX R’S, NINETEEN S’S, TWELVE T’S, FOUR U’S, FOUR V’S, FIVE W’S, THREE X’S, FOUR Y’S, ONE Z.

ONE A, ONE B, ONE C, ONE D, TWENTYNINE E’S, FIVE F’S, ONE G, THREE H’S, SEVEN I’S, ONE J, ONE K, TWO L’S, ONE M, TWENTY N’S, SIXTEEN O’S, ONE P, ONE Q, SIX R’S, TWENTY S’S, TEN T’S, FOUR U’S, THREE V’S, FOUR W’S, FIVE X’S, THREE Y’S, ONE Z.

In similar vein, pangrammatic loops of length 3 follow, but now in shorthand, using arabic numerals to stand for number words, i.e. 1 = one, 2 = two, etc. The first list is enumerated by the second, the second by the third and the third by the first. The 1st loop contains minimal pangrams, the 2nd, pangrams with plural s’s:

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
1  1  1  1 31  5  1  5  9  1  1  1  1 20 16  1  1  5  5 11  1  4  3  4  2  1
1  1  1  1 28  7  1  3  8  1  1  2  1 20 18  1  1  5  2  8  3  6  3  2  3  1
1  1  1  1 31  2  5  9  7  1  1  1  1 16 15  1  1  5  3 16  1  3  6  2  3  1

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
1  1  1  1 32  5  2  3  7  1  1  1  1 22 18  1  1  3 19 14  2  6  7  2  3  1
1  1  1  1 32  3  2  6  6  1  1  1  1 20 18  1  1  6 19 16  2  4  7  2  3  1
1  1  1  1 27  2  2  5  8  1  1  1  1 19 17  1  1  5 21 14  2  2  6  5  3  1

Here also a minimal pangrammatic loop of length 4 (no equivalent using plural s’s exists):

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
1  1  1  1 25  4  2  4  7  1  1  2  1 16 18  1  1  5  5 11  3  4  5  4  2  1
1  1  1  1 28  9  2  3  7  1  1  2  1 16 18  1  1  6  3  9  5  7  5  2  2  1
1  1  1  1 30  3  3  5  9  1  1  1  1 20 15  1  1  3  5 12  1  5  6  3  2  1
1  1  1  1 30  6  1  6  8  1  1  2  1 17 14  1  1  6  2 12  1  5  4  2  3  1

“There exist no minimal pangrammatic loops of length 5 or longer until we reach lengths 10, 33, and 55 (no plural s’s) and lengths 15, 22, 23, 207 and 312 (with plural s’s),” he adds. “This completes what I believe to be an exhaustive survey of all self-enumerating minimal pangrammatic loops.”

(Thanks, Lee.)

A New Find

From Lee Sallows, a remarkable new self-inventorying list:

ONE A, ONE B, ONE C, ONE D, TWENTYEIGHT E, SEVEN F, FIVE G, FIVE H, EIGHT I, ONE J, ONE K, ONE L, ONE M, EIGHTEEN N, EIGHTEEN O, ONE P, ONE Q, FOUR R, TWO S, TEN T, FOUR U, FIVE V, FOUR W, ONE X, TWO Y, ONE Z

“I may be wrong, but I believe it to be the most concise self-descriptive (or ‘self-enumerating’) English pangram yet discovered, with as many as 12 of its 26 letters occurring just once.”

(Thanks, Lee!)

12/18/2019 UPDATE: We’ve learned that the same self-descriptive pangram had already been found in 1998 by Gilles Esposito-Farese, in collaboration with Éric Angelini and Nicolas Graner.

Sums and Sums

lee sallows self-descriptive magic square

Something new from Lee Sallows: a self-descriptive magic square. Each row, column, and long diagonal adds up to 20, and every letter used is correctly counted.

“You may notice that the square includes a fox. But don’t be foxed by the fox. Just enjoy him. For this is not merely any old fox. No, it is our old friend the quick brown fox that jumped over that lazy dog!”

(Thanks, Lee!)

The Egyptian Lo Shu

https://commons.wikimedia.org/wiki/File:Magic_Square_Lo_Shu.svg

Another contribution from Lee Sallows:

“The smallest, oldest and most famous magic square of all is the specimen of Chinese origin known as the Lo shu. In this, the numbers from 1 to 9 are so placed that their sum taken in any row, column or diagonal is 15. This is another way of saying that the sum of any three of them lying in a straight line is 15. Less well known is the ‘Egyptian’ Lo shu (seen below) in which the same numbers are rearranged in a triangular formation that exhibits the same property.”

(From his book Geometric Magic Squares, 2013.) (Thanks, Lee.)

sallows egyptian lo shu