Bug Hunt

terletzky patent

Frustrated in catching insects in 1904, Max Terletzky hit on this rather alarming solution. A basket with an open mouth is attached to the business end of a feathered arrow; the prospective bug hunter props open the basket’s mouth, stalks his prey, and fires at it using a bow. The arrow is attached to a cord in the archer’s hand, which closes the basket doors when the arrow has intercepted the bug and reached the limit of its flight. At that point the arrow drops to the ground and the archer can draw in the cord and claim his prize.

Terletzky writes, “This particular construction of the automatic device for closing the doors of the basket is extremely strong, simple, and durable in construction, as well as thoroughly efficient in operation.” For all I know he’s right.

The Thunder Stone

https://commons.wikimedia.org/wiki/File:The_Bronze_Horseman_(St._Petersburg,_Russia).jpg
Image: Wikimedia Commons

In Saint Petersburg, an equestrian statue of Peter the Great stands atop an enormous pedestal of granite. The statue was conceived by French sculptor Étienne Maurice Falconet, who envisioned the horse rearing at the edge of a great cliff under Peter’s restraining hand.

Casting the horse and rider was relatively easy; harder was finding a portable cliff. In September 1768 a peasant led authorities to an enormous boulder half-buried near the village of Konnaia, four miles north of the Gulf of Finland and about 13 miles from the center of Saint Petersburg. Falconet proposed cutting it into pieces, but Catherine the Great, who wanted to show off Russia’s technological potential, ordered it moved whole, “first by land and then by water.”

Incredibly, she got her wish. The unearthed boulder measured 42 feet long, 27 feet wide, and 21 feet high; even when trimmed by a third it weighed an estimated 3 million pounds. But it was mounted on a chassis and rolled along atop large copper ball bearings, a “mountain on eggs,” as stonecutters worked continuously to shape it. When they reached the Gulf of Finland it was transferred precariously to a barge mounted between two cutters of the imperial navy, which carried it carefully to the pier at Senate Square, where it was installed in 1770, after two years of work. The finished pedestal stands 21 feet tall.

“The daring of this enterprise has no parallel among the Egyptians and the Romans,” marveled the Journal Encyclopédique; the English traveler John Carr said that the feat astonished “every beholder with a stupendous evidence of toil and enterprise, unparalleled since the subversion of the Roman empire.” It remains the largest stone ever moved by man.

https://commons.wikimedia.org/wiki/File:Thunder_Stone.jpg

Warm Work

When Jos de Vink retired from a career in computer technology in 2002, he began casting about for an engaging project. His neighbor, a passionate model builder, challenged him to design a working hot air engine driven solely by the heat of a tea or wax light.

De Vink produced a trial engine using the principles of the first hot air engine built by Robert Stirling in 1816. He displayed it for his model club and at a model exhibition in the Netherlands and, encouraged by the response, began to build more.

By 2010 he had created about 27 engines and began construction on several Stirling low temperature difference (LTD) engines that can run on the warmth of a human hand.

“De Vink designs his engines from scraps of brass and bronze from a scrap dealer,” writes Art Donovan in The Art of Steampunk. “The machines demonstrate the possibility of moving large objects using little energy and show different drive techniques used by hot air engine builders for the past two centuries.”

The Long View

https://commons.wikimedia.org/wiki/File:Bundesarchiv_Bild_146III-373,_Modell_der_Neugestaltung_Berlins_(%22Germania%22).jpg
Image: Wikimedia Commons

Hitler’s chief architect, Albert Speer, favored a “theory of ruin value” in which German buildings would collapse into aesthetically pleasing ruins, like those of classical antiquity. “I want German buildings to be viewed in a thousand years as we view Greece and Rome,” he said.

Using special materials and applying statistical principles, Speer claimed to have created structures that in 1,000 years would resemble Roman ruins. “The ages-old stone buildings of the Egyptians and the Romans still stand today as powerful architectural proofs of the past of great nations, buildings which are often ruins only because man’s lust for destruction has made them such,” he wrote.

Hitler liked to say that the purpose of his building was to transmit his time and its spirit to posterity. Ultimately, all that remained to remind men of the great epochs of history was their monumental architecture, he remarked. What then remained of the emperors of the Roman Empire? What would still give evidence of them today, if not their buildings […] So, today the buildings of the Roman Empire could enable Mussolini to refer to the heroic spirit of Rome when he wanted to inspire his people with the idea of a modern imperium. Our buildings must also speak to the conscience of future generations of Germans.

Hitler endorsed the idea, favoring the use of durable materials such as granite to reflect his soaring ambitions. “As capital of the world,” he said, “Berlin will be comparable only to ancient Egypt, Babylon, or Rome!” Ironically, this came true: When ancient Rome collapsed, its greatest buildings were pillaged for building materials, and when the Russians demolished Speer’s grandiose Chancellery in 1947, its marble was reused to build a metro station.

Hot Lunch

malmo lantern patent

Christina Malmo of Montana patented this combination lantern and dinner pail in 1905. The lantern, which contains its own fuel source, hugs the pail, “conducting heat to the victuals within.”

“This close connection between the lamp attachment and the dinner-pail serves the double purpose of steadying the lamp, thus avoiding any swinging which would occur were the lamp attached by any loose means. The second utility of this close connection is that the heat from the lamp is thus utilized in warming the victuals within the dinner-pail, a very useful advantage to a miner or any one who is obliged to carry his dinner for any length of time.”

Things to Come

Science fiction writer Murray Leinster predicted the Internet in 1946:

I got Joe, after Laurine nearly got me. You know the logics setup. You got a logic in your house. It looks like a vision receiver used to, only it’s got keys instead of dials and you punch the keys for what you wanna get. It’s hooked in to the tank, which has the Carson Circuit all fixed up with relays. Say you punch ‘Station SNAFU’ on your logic. Relays in the tank take over an’ whatever vision-program SNAFU is telecastin’ comes on your logic’s screen. Or you punch ‘Sally Hancock’s Phone’ an’ the screen blinks an’ sputters an’ you’re hooked up with the logic in her house an’ if somebody answers you got a vision-phone connection. But besides that, if you punch for the weather forecast or who won today’s race at Hialeah or who was mistress of the White House durin’ Garfield’s administration or what is PDQ and R sellin’ for today, that comes on the screen too. The relays in the tank do it. The tank is a big buildin’ full of all the facts in creation an’ all the recorded telecasts that ever was made — an’ it’s hooked in with all the other tanks all over the country — an’ everything you wanna know or see or hear, you punch for it an’ you get it. Very convenient. Also it does math for you, an’ keeps books, an’ acts as consultin’ chemist, physicist, astronomer, an’ tea-leaf reader, with a ‘Advice to the Lovelorn’ thrown in. The only thing it won’t do is tell you exactly what your wife meant when she said, ‘Oh, you think so, do you?’ in that peculiar kinda voice. Logics don’t work good on women. Only on things that make sense.

From Leinster’s story “A Logic Named Joe.” (Thanks, Bob.) See You’ve Got Mail.

Higher Mammals

http://www.cuppafame.com/#!rv;g=p-GB190408713A;t=Patent;backtoken=searchresult

In 1904 Belgian circus manager Eduard Wulff patented an apparatus “whereby living animals, such as horses, elephants, monkeys etc., are readily thrown into space for the purpose of causing same to take a somersault or so-called salto-mortale.”

It’s pretty simple: A “throwing plate” (3) is clamped over a stationary base (1), compressing two powerful arched springs (6). The animal is fitted with a corset which is attached by rings to four supporting standards (7). Wulff emphasizes that the animal should be nearly hanging on the standards, with its feet barely contacting the base. “Otherwise the animal would cling with the legs, which would be objectionable.”

The user pulls a lever, releasing the throwing plate, and “the animal will be caused to turn in space and perform a so-called salto-mortale.” Fair enough. He says nothing about landing.

Return to Sender

Mathematician Yutaka Nishiyama of the Osaka University of Economics has designed a nifty paper boomerang that you can use indoors. A free PDF template (with instructions in 70 languages!) is here.

Hold it vertically, like a paper airplane, and throw it straight ahead at eye level, snapping your wrist as you release it. The greater the spin, the better the performance. It should travel 3-4 meters in a circle and return in 1-2 seconds. Catch it between your palms.

The Modern Prometheus

jacobson railroad

By 1958 many of the attributes of living things could be found in our technology: locomotion (cars), metabolism (steam engines), energy storage (batteries), perception of stimuli (iconoscopes), and nervous or cerebral activity (computers). The missing element was reproduction: We hadn’t yet created a nonliving artifact that could make copies of itself.

So Brooklyn College chemistry professor Homer Jacobson built one. Using an HO gauge model railroad, he designed an “organism” made of boxcars that could use sensors to select other cars on the track and assemble them on a siding into models of itself. “Head” cars have “brains,” and “tail” cars have “muscles” and “eyes”; together, a head and a tail make an organism in which the head directs the tail to watch for available cars elsewhere on the track and shunt them appropriately onto a siding to create a new organism.

“Any new ‘organisms’ formed continue the propagation in a linear fashion,” Jacobson wrote, “until the environment runs out of parts, or there are no more sidings available, or a mistake is made somewhere in the operation of a cycle, i.e., a ‘mutation.’ Such an effect, like that with living beings, is usually fatal.”

(Homer Jacobson, “On Models of Reproduction,” American Scientist, September 1958.)

The Vacuum Airship

https://commons.wikimedia.org/wiki/File:Flying_boat.png

A conventional balloon rises because its airbag displaces a large volume of air. But the gas that fills the bag has some weight; it, along with the weight of the gondola, reduces the balloon’s total lift.

Realizing this, Italian monk Francesco Lana de Terzi in 1670 proposed a “vacuum airship,” a balloon whose airbag was filled with nothing at all. Since a vacuum weighs nothing, this should maximize the vehicle’s lift — the vacuum could displace a large volume of air without itself adding any weight.

In principle this might work; the problem is that the vacuum would tend to collapse its container, and building a shell sturdy enough to withstand it would leave us with a ship too heavy to lift. It’s not clear whether any material or structure could overcome this problem.