Down in Front

https://www.google.com/patents/US1517774

In 1924, as today, it was troublesome and embarrassing to have to excuse your way down a row of theater patrons to get to your seat. Massachusetts inventor Louis Duprey offered this improvement: The whole auditorium is built atop a “loading compartment” where each patron can take his seat, which is then raised on a giant plunger into the theater.

During a performance, any seat occupant may depart by merely turning the handpiece, causing the seat to be lowered into the lobby or loading compartment, and in like manner he may again re-enter the auditorium without in any wise disturbing, or interfering with the view of, other patrons.

A side benefit is that “in case of fire or other panic” all the seats can be lowered into the loading chamber, which is fireproof and designed to accommodate an orderly mass exit. You can even retrieve your hat from the underside of the trapdoor as you take your leave.

Unquote

https://commons.wikimedia.org/wiki/File:Schopenhauer_1852.jpg

“Wealth is like sea-water; the more we drink, the thirstier we become; and the same is true of fame.” — Arthur Schopenhauer

(Thanks, Macari.)

Hidden Sum

A problem from the 1973 American High School Mathematics Examination:

In this equation, each of the letters represents uniquely a different digit in base 10:

YE × ME = TTT.

What is E + M + T + Y?

Click for Answer

Celestial Mechanics

https://commons.wikimedia.org/wiki/File:Aniol_z_cytra.jpg

Being an angel is hard work. In his 1926 essay “On Being the Right Size,” J.B.S. Haldane writes, “An angel whose muscles developed no more power weight for weight than those of an eagle or a pigeon would require a breast projecting for about four feet to house the muscles engaged in working its wings, while to economize in weight, its legs would have to be reduced to mere stilts.”

And this takes no account of the weight of the harp. In The Book of the Harp, John Marson notes that gold is about 10 times heavier than willow, once the favorite wood of Celtic harp makers. He calculates that a harp of gold would weigh 120 pounds, far more than the 70-80 pounds of the largest pedal harp.

Should we worry about this? Let us not forget that it was angels who destroyed Babylon for its people’s wrongdoings. In the Book of Revelation, chapter 18, verse 21 tells us: “And a mighty angel took up a stone like a great millstone, and cast it into the sea, saying, ‘Thus with violence shall that great city of Babylon be thrown down.'”

This becomes a public health matter. Even if harps aren’t thrown at us deliberately by vengeful angels, Marson writes, “there is always the danger of one being dropped accidentally from a great height, resulting in the kind of damage caused on occasion by meteorites — unless, of course, the Bible is indeed correct after all, and angels do not play harps.”

See Hesiod’s Anvil.

Straight and Narrow

wells triangle

A pleasing fact from David Wells’ Archimedes Mathematics Education Newsletter:

Draw two parallel lines. Fix a point on one line and move a second point along the other line. If an equilateral triangle is constructed with these two points as two of its vertices, then as the second point moves, the third vertex of the triangle will trace out a straight line.

Thanks to reader Matthew Scroggs for the tip and the GIF.

Podcast Episode 89: An African From Baltimore

https://commons.wikimedia.org/wiki/File:LoBagola_1911.png

In the 1920s Bata Kindai Amgoza ibn LoBagola toured the United States and Europe to share the culture of his African homeland with fascinated audiences. The reality was actually much more mundane: His name was Joseph Lee and he was from Baltimore. In this week’s episode of the Futility Closet podcast we’ll tell the curious story of this self-described “savage” and trace the unraveling of his imaginative career.

We’ll also dump a bucket of sarcasm on Duluth, Minnesota, and puzzle over why an acclaimed actor loses a role.

Please consider becoming a patron of Futility Closet — on our Patreon page you can pledge any amount per episode, and all contributions are greatly appreciated. You can change or cancel your pledge at any time, and we’ve set up some rewards to help thank you for your support.

You can also make a one-time donation via the Donate button in the sidebar of the Futility Closet website.

Sources for our feature on Bata LoBagola:

Bata Kindai Amgoza ibn LoBagola, LoBagola: An African Savage’s Own Story, 1930.

David Killingray and Willie Henderson, “Bata Kindai Amgoza ibn LoBagola and the Making of An African Savage’s Own Story,” in Bernth Lindfors, Africans on Stage: Studies in Ethnological Show Business, 1999.

Alex Pezzati, “The Scholar and the Impostor,” Expedition 47:2 (Summer 2005), 6.

James Olney, Tell Me Africa: An Approach to African Literature, 2015.

Louis Chude-Sokei, The Last “Darky”: Bert Williams, Black-on-Black Minstrelsy, and the African Diaspora, 2005.

John Strausbaugh, Black Like You: Blackface, Whiteface, Insult & Imitation in American Popular Culture, 2007.

Bata Kindai Amgoza Ibn LoBagola papers, New York Public Library Archives & Manuscripts.

Jim Christy, “Scalawags: Bata Kindai Amgoza ibn LoBagola,” Nuvo, Summer 2013.

Kentucky representative James Proctor Knott’s derisive panegyric on Duluth, Minnesota, was delivered in the U.S. House of Representatives on Jan. 27, 1871.

This week’s lateral thinking puzzle was contributed by listener Ben Snitkoff, who sent this corroborating link (warning — this spoils the puzzle).

You can listen using the player above, download this episode directly, or subscribe on iTunes or via the RSS feed at http://feedpress.me/futilitycloset.

Many thanks to Doug Ross for the music in this episode.

Enter promo code CLOSET at Harry’s and get $5 off your first order of high-quality razors.

If you have any questions or comments you can reach us at podcast@futilitycloset.com. Thanks for listening!

Special Delivery

In March 1999, fisherman Steve Gowan was fishing for cod off the coast of Essex when he dredged up a green ginger beer bottle with a screw-on rubber stopper. Inside he found a note:

Sir or madam, youth or maid,

Would you kindly forward the enclosed letter and earn the blessing of a poor British soldier on his way to the front this ninth day of September, 1914.

Signed

Private T. Hughes
Second Durham Light Infantry.
Third Army Corp Expeditionary Force.

The enclosed letter read:

Dear Wife,

I am writing this note on this boat and dropping it into the sea just to see if it will reach you. If it does, sign this envelope on the right hand bottom corner where it says receipt. Put the date and hour of receipt and your name where it says signature and look after it well. Ta ta sweet, for the present.

Your Hubby.

Private Thomas Hughes, 26, of Stockton-on-Tees, had dropped the bottle into the English Channel in 1914 as he left to fight in France. He was killed two days afterward. His wife Elizabeth and daughter moved to New Zealand, where Elizabeth died in 1979. Gowan delivered the letter to the daughter, Emily Crowhurst, in Auckland that May. Two years old when her father had left for the war, she was now 86. She said, “It touches me very deeply to know … that his passage reached a goal. I think he would be very proud it had been delivered. He was a very caring man.”

The Plate Trick

Theoretical physicist Paul Dirac offered this example to show that some objects return to their original state after two full rotations, but not after one.

Hold a cup water in one hand and rotate it through 360 degrees (in either direction). You’ll have to contort yourself to accomplish this without spilling any water, but if you continue rotating the cup another 360 degrees in the same direction, you’ll find that you return to your original state.

The same principle can be demonstrated using belts. In the video below, the square goes through two full rotations and we find that the belts have returned to their original state. This would not be the case after a single rotation. (Here two belts are attached to the square, but the trick works with any number of belts.)

The Eighth Plague

https://commons.wikimedia.org/wiki/File:Melanoplus_spretusAnnReportAgExpStaUM1902B.jpg

On June 15, 1875, physician Albert Childs was standing outside his office in Cedar Creek, Nebraska, when he saw the horizon darken. At first he was hopeful for some needed rain, but then he realized that the cloud was moving under its own power.

“And then suddenly it was on him, a trillion beating wings and biting jaws,” writes entomologist Steve Nicholls in Paradise Found (2009). It was an unusually huge swarm of Rocky Mountain locusts descended from the mountains. Stunned, Childs set about estimating its size:

Using the telegraph, he sent messages up and down the line and found the swarm front to be unbroken for 110 miles. With his telescope he estimated the swarm to be over half a mile deep, and he watched it pass for ‘five full days.’ He worked out that the locusts were traveling at around fifteen miles an hour and came up with the astonishing fact that the swarm was 1,800 miles long. This swarm covered 198,000 square miles, or, if it was transposed on to the east coast, it would have covered all the states of Connecticut, Delaware, Pennsylvania, Maryland, Maine, Massachusetts, New Jersey, New York, New Hampshire, Rhode Island, and Vermont.

“Albert Childs had recorded the largest ever swarm — the biggest aggregation of animals ever seen on planet Earth,” Nicholls writes. University of Wyoming entomologist Jeffrey Lockwood calls it the “Perfect Swarm.”

Complementary Sequences

Another interesting item from James Tanton’s Mathematics Galore! (2012):

Write down a sequence of positive integers that never decreases. The list can include duplicates. As an example, here’s a list of primes:

2, 3, 5, 7, 11, 13

Call the sequence pn. Now, a “frequency sequence” records the number of members less than 1, less than 2, and so on. For the list of primes above, the frequency sequence is:

0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6

Pleasingly, the frequency sequence of the frequency sequence of pn is pn. That is, if we take the frequency sequence of the list 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6 above, we get 2, 3, 5, 7, 11, 13 again.

Now add position numbers to each of the two lists, pn and its frequency sequence — that is, add 1 to the first element of each, 2 to the second, and so on. With the primes that gives us:

Pn: 3, 5, 8, 11, 16, 19 …

Qn: 1, 2, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20 …

These two sequences will always be complementary — all the counting numbers appear, but they’re split between the two sequences, with no duplicates.

Page 5 of 897« First...34567...10203040...Last »