# The Tonal System

In 1859, far ahead of its application in computing, engineer John W. Nystrom proposed that we adopt base 16 for arithmetic, timekeeping, weights and measures, coinage, and even music.

“It is evident that 12 is a better number than 10 or 100 as a base, but it admits of only one more binary division than 10, and would, therefore, not come up to the general requirement,” he wrote. “The number 16 admits binary division to an infinite extent, and would, therefore, be the most suitable number as a base for arithmetic, weight, measure, and coins.”

He named the 16 digits an, de, ti, go, su, by, ra, me, ni, ko, hu, vy, la, po, fy, and ton, and invented new numerals for the upper values. Numbers above this range would be named using these roots, so 17 in decimal would be tonan (“16 plus 1”) in Nystrom’s system. And he devised some wonderfully euphonious names for the higher powers:

 Base 16 Number Tonal Name Base 10 Equivalent 10 ton 16 100 san 256 1000 mill 4,096 1,0000 bong 65,536 10,0000 tonbong 1,048,576 100,0000 sanbong 16,777,216 1000,0000 millbong 268,435,456 1,0000,0000 tam 4,294,967,296 1,0000,0000,0000 song 1612 1,0000,0000,0000,0000 tran 1616 1,0000,0000,0000,0000,0000 bongtran 1620

So the hexadecimal number 1510,0000 would be mill-susanton-bong.

The system was never widely adopted, but Nystrom was confident in its rationality. “I know I have nature on my side,” he wrote. “If I do not succeed to impress upon you its utility and great importance to mankind, it will reflect that much less credit upon our generation, upon scientific men and philosophers.”

His book is here.